
GOOGLE ALLOYDB
VS.
AMAZON AURORA
VS.
AZURE COSMOSDB

Taras Kloba, Kyrylo Prykhno, PGConf 2022

AZURE COSMOSDB

INTRO

Our customers want to
modernize from their legacy
proprietary databases …

Oracle SQL Server DB2

to standardize on open source

That’s why 75% of all databases are
expected to be in the cloud this year.

Cloud offers organizations agility, cost
savings, and differentiated capabilities.

Source: Gartner: The Future of the DBMS Market

https://softserveinc-my.sharepoint.com/:b:/p/tbachyns/EWphchZPH-9OrvJ9YDnPT8sBS81bbM0QxyIye5QCKNF72A?e=97iR0P

H
T
A
P

nalytical
ransactional
ybrid

roccesing

ALLOYDB FOR
POSTGRESQL

ALLOYDB FOR
POSTGRESQL

ALLOYDB HIERARCHICAL
STRUCTURE

CLUSTER

READ
POOL
INSTANCE

READ
POOL
INSTANCE

READ
POOL
INSTANCE

PRIMARY
INSTANCE

Nodes

Stand-by
(if highly available)

• A cluster contains all the resources for a
PostgreSQL deployment.

• A primary instance provides the
read/write connection point for the
databases in a cluster. Every cluster has one
primary instance.

• A read pool instance provides a read
connection point for database data in a
cluster.

Introducing AlloyDB, a PostgreSQL-compatible cloud database service

https://www.youtube.com/watch?v=o5pKfH0Tonw

INTELLIGENT DATABASE
STORAGE DESIGNED AND
OPTIMIZED FOR
POSTGRESQL
Powers fast, predictable performance by
eliminating I/O bottlenecks and offloading to
storage service.

Regional storage improves cluster availability
with fast, bounded failover and enables low-
lag-to-read replicas.

ALLOYDB ARCHITECTURE
ZONE ONE ZONE TWO ZONE <any>

FAILOVER REPLICA
OPTIMIZED POSTGRESQL

Analytics
Accelerator

Cache

READ POOL NODE
OPTIMIZED POSTGRESQL

Analytics
Accelerator

Cache

PRIMARY
OPTIMIZED POSTGRESQL

Analytics
Accelerator

Cache

INTELLIGENT DATABASE STORAGE ENGINE

GOOGLE DISTRIBUTED FILE SYSTEM—COLOSSUS

Only Log Writes No BLOCK Writes

FAST AND PREDICTABLE PERFORMANCE
Intelligent, workload-aware dynamic data organization leverages both row-based and column-based formats.
Format layers of cache ensure excellent price-performance.

ALLOYDB ARCHITECTURE

QUERY ULTRA-FAST
CACHE

SCALE OUT ALLOYDB
STORAGE

DRAM

Row FormatColumn Format

AI/ML Driven Auto
Columnarization

• Automatic vacuum
management

• Automatic memory
management

• Automatic storage tiering

• Automatic data
columnarization and query
rewrite

• Fully compatible with
PostgreSQL 14

• Over 175 flags supported

• Over 50 extensions supported

• Move your existing
PostgreSQL application as-is,
with no code changes

• No licensing or opaque I/0
charges

• Great price-performance

• Right-size instance when
needed

• Pay-for-what-you-use storage

EASY TO
MANAGE

FULLY POSTGRESQL
COMPATIBLE

PREDICTABLE AND
TRANSPARENT PRICING

ADDITIONAL FEATURES

AWS AURORA

Amazon Aurora is a cloud-based relational
database engine that combines the speed and
reliability of high-end commercial databases with
the simplicity and cost-effectiveness of open-
source databases.

Basically, they have taken PostgreSQL and MySQL
and replaced the storage layer with a proprietary
layer that allows it to be distributed.

BASIC ARCHITECTURE

AWS re:Invent 2021 - Deep dive on Amazon Aurora

https://www.youtube.com/watch?v=SEXbvl2oQGs

PRIMARY DB INSTANCE
Supports read and write operations and
performs the data modifications to the
cluster volume. Each Aurora DB cluster has
one primary DB instance.

AURORA REPLICA
Connects to the same storage volume as
the primary DB instance and supports only
read operations. Each Aurora DB cluster can
have up to 15 Aurora Replicas in addition to
the primary DB instance.

Amazon Aurora DB Cluster

Availability Zone a Availability Zone b Availability Zone c

M R R RAurora
Replica

Aurora
Replicas

Cluster Volume

Data CopiesData Copies Data Copies

Primary
Instance

reads writes

REGION US-WEST 1

AZ1 AZ2 AZ3

WRITE NODE
A single node or endpoint that makes all write requests for the
database.

READ NODES
Multiple read-only endpoints to meet your read throughput
requirements, typically deployed across multiple AZs.

STORAGE LAYER
A collection of machines with SSD spread across multiple AZs.
Data is written here six times.

The trick is … everything is decoupled instead of writing locally to
attached persistent storage, it writes to this custom, distributed
storage layer.

WRITE READ READ READ

STORAGE

REGION US-WEST 1

AZ2 AZ3

AURORA: 4 OF 6 QUORUM WRITES

The storage layer will commit a transaction when four of six
copies are written.

They do this so that the database can survive the loss of an
availability zone. If two copies were in an AZ, the data can still
have four copies.

Reads are guaranteed when three writes are written.

WRITE READ READ READ

STORAGE

REGION US-WEST 1

AZ1 AZ2 AZ3

SCALE (FOR READS IN A SINGLE REGION)

In order to scale Aurora, you simply add more instances on top of
the shared storage, and they all have immediate access to all
data written to the disk.

RESILIENCE (FOR READS IN A SINGLE REGION)

If a read node fails, it can just be recycled, and all queries can just
be directed to other instances while it recovers.

WRITE READ READ READ

STORAGE

AZURE DATABASE FOR
POSTGRESQL—
HYPERSCALE (CITUS) IS
NOW AZURE COSMOS
DB FOR POSTGRESQL

Oct 12, 2022

APPLICATION

COORDINATOR
NODE

WORKER
NODES

W1

W2

W3_Wn

A Citus cluster consists of multiple PostgreSQL servers with the Citus extension.

Distributed Postgres: How to build a multi-tenant SaaS app with Citus

https://www.postgresql.eu/events/pgconfeu2022/schedule/session/4081-distributed-postgres-how-to-build-a-multi-tenant-saas-app-with-citus/

APPLICATION

CREATE TABLE campaigns (…) ;
SELECT create_distributed_table(

'campaigns’ , 'company_id’) ;

W1

W2

W3_Wn

METADATA

CREATE TABLE
campaigns_101
CREATE TABLE
campaigns_104

CREATE TABLE
campaigns_102
CREATE TABLE
campaigns_105

CREATE TABLE
campaigns_103
CREATE TABLE
campaigns_106

AZURE COSMOS DB
FOR POSTGRESQL

APPLICATION

BEGIN ;
UPDATE

SET
WHERE

UPDATE
SET

WHERE
COMMIT ;

W1

W2

W3_WnCOORDINATOR
NODE

campaigns
started = true
campaign_id = 2;
ads
finished = true
campaign_id = 1;

callbacks:
• pre-commit
• post-commit
• abort

BEGIN …
assign_distributed_
transaction_id …
UPDATE campaigns_102 …
PREPARE TRANSACTION…
COMMIT PREPARED…

BEGIN …
assign_distributed_
transaction_id …
UPDATE campaigns_203 …
PREPARE TRANSACTION…
COMMIT PREPARED…

METADATA

• JSONB

• Joins

• Functions

• Constrains

• Indexes:
§ B-tree

§ Gin
§ Brin
§ Gist

• Partial indexes

• Other extensions

• Rich datatypes

• Foreign data wrappers

• Window functions

• CTEs

• Full text search

• pg_stat_statements

BENCHMARKING

MY MAIN ADVICE WHEN
RUNNING PERFORMANCE
BENCHMARKS FOR POSTGRES
IS: “AUTOMATE IT!”

Jelte Fennema

• Not a database!

• Leading open-source tool for benchmarking
relational databases

• Interfaces:
§ Graphical
§ Command Line

§ Web REST interfaces

• Industry standard benchmarks

• High performance and scalability

https://hammerdb.com

https://hammerdb.com/

• Hosted by TPC Council since 2019
§ Industry standard body for database benchmarks

• TPC-OSS subcommittee
§ Oversees and approves changes

• V4.1 Released on April 22, 2021

• Source code on GitHub

• Binaries @ GitHub Releases
§ https://www.hammerdb.com/download.html

• Client natively supports Linus and Windows on x64
§ GUI & CLI on both Linux and Windows

• GitHub Release Downloads
§ https://www.hammerdb.com/stats.html

• Test databases on any platform

https://www.hammerdb.com/download.html
https://www.hammerdb.com/stats.html

TPROC-C = OLTP

• Transactional workloads. Row oriented, high
read and write throughput

• Derived from TPC-C

TPROC-H = OLAP

• Analytic, Decision Support

• Focus on ETL

• High bandwith reads and minimal writes

• Derived from TPC-H

Using TPCC/TPC-C, TPCH/TPC-H for derives
workloads not permitted (trademark violation)

TRANSACTIONAL
APP

ANALYTICS,
REPORTING

OLAPOLTP

• Parallel benchmarking software
§ Concurrency control must be in database,

not in client

• Complex workloads designed to scale and test
RDBMS concepts
§ Locking and latching

• Cross reference workloads across multiple
database engines
§ Validate concepts

• HammerDB up to 6-7 NOPM on commercial
database engines on two socket servers
§ High confidence levels that bottlenecks are in

database software not HammerDB

8 CPU/vCPU
Benchmark Client

32 CPU/vCPU
Database Server

Multi-Core

CPU CPU

CPU CPU

Virtual
Users

Multi-Core

CPU CPU

CPU CPU

Multi-Core

CPU CPU

CPU CPU

SCHEMA BUILD

• Creates tables

• Creates and loads data

• Creates Indexes

• Creates functions/stored procedures

• Gathers statistics

NUMBER OF WAREHOUSES

• Define according to system scale

• Entire schema scaled based on warehouse
count

STORE PROCEDURES

• New Order

• Payment

• Delivery

• Stock Level

• Order Status

VIRTUAL USERS TO BUILD SCHEMA

• Schema creates and loads data in parallels

• Use number of CPU cores/threads on
HammerDB client

Warehouse
W

W_10

District
W*10

D_W_10, D_10

Customer
W*30k

C_W_10, C_D_10, C_10

History
W*30k+

W_10

Stock
W*100k

S_W_10, S_I_10

Item
100k (fixed)

I_10

Order-Line
W*300k

OL_W_10, OL_D_10,
OL_O_10,

OL_NUMBER

Order
W*30k+

O_W_10, O_D_10,
O_10

New-Order
W*9k+

NO_W_10, NO_D_10,
NO_O_10

Table Name
cardinality
Primary key

100k

1+

10

3k

1+

W

0-1

3+

10-15

NOPM

• How fast you are going

• Close relation to official tpmC

TPM

• How hard your engine is working

COMPARING PERFORMANCE

• NOPM can be compared between engines

• TPM can only be compared across the same engine

• TPM useful engineering metric to compare statistics

Vuser 1: Test complete, Taking end Transactional Count.
Vuser 1: 140 Active Virtual Users configurated
Vuser 1: TEST RESULT : System achieves 1722391 NOPM from 5216947 PostreSQL TPM

LIMITS GCP ALLOYDB AWS AURORA AZURE COSMOSDB
FOR POSTGRESQL

Max database storage per
cluster

5 TiB 128 TiB 2 TiB per worker nodes
(max 40 Tib)*

Max read pool
nodes/workers per cluster

20 (15 if all nodes are of
the 64 vCPU machine type)

Up to 15 Aurora Replicas in
addition to the primary DB
instance

Up to 20 workers

Maximum concurrent
connections

Up to 240’000 Up to 16’000 Up to 2’000*

PostgreSQL compatibility 14 14 15

Cost per month USD 8’619,26 USD 3’671.24 + IOPS 8’992.47

Hardware Configuration vCPU: 32 – RAM: 256 GB vCPU: 32 - RAM: 256 GB Coordinator: 4 vCPU, 16 GB
RAM
Worker node: 2 nodes x 16
vCPU, 128 GB RAM

(TPROC-C DERIVED FROM TPC-C)

0

100000

200000

300000

400000

500000

600000

1 2 4 8 16 32 64 128

Sample HammerDB benchmark runs

Azure CosmosDB for PostgreSQL Amazon Aurora Google AlloyDB for PostgreSQL

0

10

20

30

40

50

60

70

80

Google Alloy DB AWS Aurora Azure Cosmos DB

(PRICE/KNOPM)

• TPROC-H for Analytics

• Cloud Queries

• Stream of 22 Complex queries

• PostgreSQL parallel query

• Columnstores

• More complex skill set required

LineItem
SF*6000k

L_ORDERKEY
L_LINENUMBER

PartSupp
SF*800k

PS_PARTKEY
PS_SUPPKEY

Part
SF*200k

P_PARTKEY

Orders
SF*1500k

O_ORDERKEY

Supplier
SF*10k

S_SUPPKEY

Customer
SF*150k

C_CUSTKEY

Nation
25

N_NATIONKEY

Region
5

R_REGIONKEY

Preparatory Steps Load Test Performance Test

DBGEN: Create Flat
Data Files

OGEN: create
Executable Queries

Create Test Scripts

Create Databases

Create Tables

Bulk Load Tables

Create Indexes &
Constraints

Create Statistics

Install Refresh
Functions

Power Test

Run Refresh
Function 1

Run Query
Stream 00

Run Refresh
Function 2

Throughput Test

Run in
parallel

Query Stream
01

Query Stream
02

…

Refresh Stream
with S pairs of

Refresh
Functions

Query Stream
01

First
run?

No

Yes

Reboot

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

01:40:48

Google AlloyDB AWS Aurora Azure CosmosDB

load_data

0

200

400

600

800

1000

1200

1 2 4 8 12

Google AlloyDB

AWS Aurora

Azure Cosmos DB

(TPROC-H DERIVED FROM TPC-H)

The lower—the better.

0

5

10

15

20

25

30

35

40

45

Google Alloy DB Azure Cosmos DB

H
un

dr
ed

s

(PRICE/QPHH)

• Run PoC(s) to get practical
experience and build
confidence

• Do full-scale architectural
exercises, with “How do I do
X?” questions instead of
“Can I do X?”

• Try to approach cloud
vendors for the best pricing
offer

CONTACT ME
DIRECTLY

TARAS KLOBA
Big Data Engineering Manager
at SoftServe Inc.

