
FROM MAP TO
REALITY: USING
POSTGIS IN WARFARE

Taras Kloba

• Founded a volunteering IT group for Ukrainian army systems, winner of the
TIDE NATO Hackathon and Ukraine Defence Hackathon.

• More than 14 years of experience in Data Engineering
• Co-leader of PostgreSQL Ukraine and Big Data Community
• Ph.D. in Economics
• Winner of the Ukrainian IT Awards 2019 in Software Architecture
• Certified Cloud Architect & Data Engineer on Google Cloud, Microsoft, and

Amazon Web Services. Microsoft Certified Trainer
• Father of three daughters

ABOUT ME

Taras Kloba
Associate Director,

Big Data & Analytics,
SoftServe Inc.

ABOUT ME

Created by https://openai.com/dall-e-3

THE DAVID AND GOLIATH STORY

https://openai.com/dall-e-3

Source: https://en.wikipedia.org/wiki/Russia%E2%80%93Ukraine_relations

UKRAINE'S RESISTANCE IN THE ONGOING WAR

https://en.wikipedia.org/wiki/Russia%E2%80%93Ukraine_relations

VISUALIZATION OF UKRAINE'S RESISTANCE

Data source: https://liveuamap.com/ Visualization authors: Kyrylo Kotelevets and Taras Kloba

https://liveuamap.com/

DATA SOURCES

NOT EVERYBODY CAN BE A SOLDIER.
BUT EVERYBODY CAN BE A PART OF RESISTANCE.

Source: “The First Code” movie https://thefirstcode.com/en/

https://thefirstcode.com/en/

LICENSEPLATEBOT

Landing page: https://platerecognition.softserveinc.com/?hs_preview=HYIqZvNg-133931468450

https://platerecognition.softserveinc.com/?hs_preview=HYIqZvNg-133931468450

AUTOMATED RECOGNITION OF MILITARY VEHICLES

Full video: https://youtube.com/watch?v=rqzIUtJcZBs

https://youtube.com/watch?v=rqzIUtJcZBs

AI-ASSISTED UAV SURVEILLANCE

Full video: https://youtube.com/watch?v=rqzIUtJcZBs

https://youtube.com/watch?v=rqzIUtJcZBs

AI-ENABLED DETECTION OF MILITARY AIRCRAFTS

Source: https://texty.org.ua/fragments/107460/aerodrom-bilya-sak-do-i-pislya-udaru-suputnykovi-znimky/

August 9, 11:10 August 10

https://texty.org.ua/fragments/107460/aerodrom-bilya-sak-do-i-pislya-udaru-suputnykovi-znimky/

UKRAINIAN AI-PROJECT ZVOOK

Source: https://www.pravda.com.ua/eng/articles/2023/03/1/7391493/

https://www.pravda.com.ua/eng/articles/2023/03/1/7391493/

DATA LEAKS

Full video: https://www.youtube.com/watch?app=desktop&v=PBUwJEM6yws

https://www.youtube.com/watch?app=desktop&v=PBUwJEM6yws

SOLUTIONS

PALANTIR TECHNOLOGIES

Full video: https://www.youtube.com/watch?v=r8LtdKFcAvg

https://www.youtube.com/watch?v=r8LtdKFcAvg

DELTA

Source: https://armyinform.com.ua/2023/07/12/ukrayinska-systema-sytuaczijnoyi-obiznanosti-delta-projshla-vyprobuvannya-nato-i-mozhe-integruvaty-vynyshhuvachi-f-16/,
Full video: https://youtube.com/watch?v=rqzIUtJcZBs

Platform for the situational awareness

Digital map
Protected chat
Secure video stream
MobileApp

https://armyinform.com.ua/2023/07/12/ukrayinska-systema-sytuaczijnoyi-obiznanosti-delta-projshla-vyprobuvannya-nato-i-mozhe-integruvaty-vynyshhuvachi-f-16/
https://youtube.com/watch?v=rqzIUtJcZBs

CORVUS INTELLIGENCE

Landing page: https://corvusintell.com/

https://corvusintell.com/

HOW CAN POSTGIS
HELP IN THESE CASES?

DATABASE SCHEMA OVERVIEW
RESTRICTED_ZONES (10,000 rows): This table stores the geographic
boundaries of restricted areas, represented as polygons.

-- No-fly Zone 1: Area near Kyiv
INSERT INTO spatial.restricted_zones (zone_name,
geom) VALUES
('Kyiv Zone', ST_GeomFromText('POLYGON((30.5238
50.4024, 30.5238 50.4724, 30.6238 50.4724, 30.6238
50.4024, 30.5238 50.4024))', 4326));

DRONE_TELEMETRY (1,000,000 rows): This table captures telemetry data
from drones, including their geographic location at given timestamps.

-- Drone 1: Inside the Kyiv Zone
INSERT INTO spatial.drone_telemetry (drone_id,
recorded_at, geom) VALUES
('Drone1', '2023-12-01 10:00:00',
ST_SetSRID(ST_MakePoint(30.5738, 50.4324), 4326));

RESTRICTED_ZONES

int id PK Primary Key

varchar zone_name Zone Name

geometry geom Geometry (Polygon)

DRONE_TELEMETRY

int id PK Primary Key

varchar drone_id Drone ID

timestamp recorded_at Recorded at

geometry geom Geometry (Point)

contains

GEOSPATIAL VISUALIZATION OF SAMPLE DATA

RESTRICTED_ZONES (10,000 rows) DRONE_TELEMETRY (1,000,000 rows)

CASE 1: WHICH DRONES HAVE
ENTERED RESTRICTED ZONES?

ANALYZING QUERY: EXECUTION TIME

285 rows retrieved starting from 1 in 1 h 2 m 28 s 206 ms
(execution: 1 h 2 m 27 s 506 ms, fetching: 700 ms)

SELECT t.drone_id,
 t.recorded_at,
 r.zone_name,
 t.geom as drone,
 r.geom as restricted_zone
FROM spatial.drone_telemetry t
 INNER JOIN spatial.resricted_zones r
 ON ST_Contains(r.geom, t.geom);

B-TREE INDEX STRUCTURE

4

2

1 3

6

5 7< < <

GIST STRUCTURE

P

p1 p2

A balanced tree where a parent node P predicates
cover its child nodes p1 and p2.

R17 R18R15 R16R13 R14R11 R12R8 R9 R10

IMPLEMENTING GIST INDEXING

CREATE INDEX
idx_restricted_zones_geom
ON
spatial.restricted_zones
USING GIST (geom);

R1

R2

R3
R4

R5

R6

R7

R9

R10R8

R12

R16

R15

R11

R14

R13

R18
R17

R19

R3 R4 R5 R6 R7

R1 R2

Mastering PostgreSQL By : Hans-Jürgen Schönig: https://subscription.packtpub.com/book/data/9781800567498

https://subscription.packtpub.com/book/data/9781800567498

ANALYZING GIST: THE POINT_OPS OPERATOR
SELECT
 amopopr::regoperator, oprcode::regproc, left(obj_description(opr.oid, 'pg_operator'), 19) description
FROM pg_am am
JOIN pg_opclass opc ON opcmethod = am.oid
JOIN pg_amop amop ON amopfamily = opcfamily
JOIN pg_operator opr ON opr.oid = amopopr
WHERE amname = 'gist'
AND opcname = 'point_ops'
ORDER BY amopstrategy;

GIST, LEVEL 1 (POINT_OPS)

Source: https://blog.csdn.net/Michaelia_hu/article/details/123181525?spm=1001.2014.3001.5501

https://blog.csdn.net/Michaelia_hu/article/details/123181525?spm=1001.2014.3001.5501

GIST, LEVEL 2 (POINT_OPS)

Source: https://blog.csdn.net/Michaelia_hu/article/details/123181525?spm=1001.2014.3001.5501

https://blog.csdn.net/Michaelia_hu/article/details/123181525?spm=1001.2014.3001.5501

GIST, LEVEL 3 (POINT_OPS)

Source: https://blog.csdn.net/Michaelia_hu/article/details/123181525?spm=1001.2014.3001.5501

https://blog.csdn.net/Michaelia_hu/article/details/123181525?spm=1001.2014.3001.5501

QUERY RESULTS, GIST

285 rows retrieved starting from 1 in 16 s 356 ms
(execution: 16 s 265 ms, fetching: 91 ms)

200x Performance Speed-Up

Nested Loop (cost=0.15..250356360.00
rows=9336232 width=174)
 -> Seq Scan on drone_telemetry t
(cost=0.00..20300.00 rows=1000000
width=45)
 -> Index Scan using
idx_restricted_zones_geom on
restricted_zones r (cost=0.15..250.33
rows=1 width=129)
 Index Cond: (geom ~ t.geom)
 Filter: st_contains(geom, t.geom)

SP-GIST, LEVEL 1 (QUAD_POINT_OPS)

Source: https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

SP-GIST, LEVEL 2 (QUAD_POINT_OPS)

Source: https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

SP-GIST, LEVEL 3 (QUAD_POINT_OPS)

Source: https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

QUERY RESULTS: SP-GIST

DROP INDEX IF EXISTS
spatial.idx_restricted_zones_geom;
CREATE INDEX
idx_restricted_zones_geom_sp ON
spatial.restricted_zones USING
SPGIST (geom);

ANALYZE spatial.restricted_zones;

285 rows retrieved starting from 1
in 14 s 111 ms
(execution: 14 s 60 ms, fetching:
51 ms)

SP-GIST, LEVEL 1 (KD_POINT_OPS)

Source: https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

SP-GIST, LEVEL 2 (KD_POINT_OPS)

Source: https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

SP-GIST, LEVEL N (KD_POINT_OPS)

SP-GiST kd_point_ops is for points, not polygons.

Source: https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

https://programs.wiki/wiki/index-in-postgresql-6-sp-gist.html

SIZE COMPARISON OF GIST AND SP-GIST
RESTRICTED_ZONES (10,000 rows)

DRONE_TELEMETRY (1,000,000 rows)

CASE 2: WHICH DRONE IS THE
CLOSEST TO THE SPECIFIED
TARGET AREA?

DATABASE SCHEMA OVERVIEW
LATEST_DRONE_TELEMETRY (100,000 rows):
• Contains the most recent location data for each drone
• drone_id is the primary key
• latest_recorded_at is the timestamp of the latest record
• latest_geom is the most recent geometry point
Our primary objective is to determine which drone is currently the
closest to a predetermined target of interest—the Kremlin in Moscow.

Latitude: 55.7517° N
Longitude: 37.6176° E

LATEST_DRONE_TELEMETRY

string drone_id PK Primary Key

timestamp latest_recorded_at Latest Recorded at

geometry latest_geom Latest Geometry (Point)

DRONE_TELEMETRY

int id PK Primary Key

string drone_id Drone ID

timestamp recorded_at Recorded at

geometry geom Geometry (Point)

has many

DRONES WITHIN 500 KM OF THE KREMLIN
SELECT
 drone_id,
 latest_recorded_at,
 latest_geom,
 ST_Distance(
 ST_Transform(latest_geom, 4326)::geography,
 ST_MakePoint(37.6176, 55.7517)::geography
) AS distance_to_kremlin
FROM
 spatial.latest_drone_telemetry
WHERE
 ST_DWithin(
 ST_Transform(latest_geom, 4326)::geography,
 ST_MakePoint(37.6176, 55.7517)::geography,
 500000
)
ORDER BY distance_to_kremlin;

TOP 10 NEAREST DRONES USING GIST INDEX
SELECT
 drone_id,
 latest_recorded_at,
 latest_geom,
 ST_Distance(latest_geom::geography, ST_MakePoint(37.6176,
55.7517)::geography) AS distance_to_kremlin
FROM
 spatial.latest_drone_telemetry
ORDER BY
 latest_geom <-> ST_SetSRID(ST_MakePoint(37.6176, 55.7517),
4326)
LIMIT 10;

Limit (cost=0.28..263.59 rows=10
width=61)
 -> Index Scan using
idx_latest_drone_telemetry_geom_g
ist on latest_drone_telemetry
(cost=0.28..2633056.28
rows=100000 width=61)
 Order By: (latest_geom <-
>
'0101000020E61000003B014D840DCF42
409C33A2B437E04B40'::geometry)

COMPARATIVE ANALYSIS: QUERYING DISTANCE TO
TARGET WITH AND WITHOUT SPATIAL CONSTRAINTS

10 rows retrieved starting from 1 in 80 ms
(execution: 60 ms, fetching: 20 ms)

10 rows retrieved starting from 1 in 882 ms
(execution: 664 ms, fetching: 218 ms)

10x Performance Speed-Up

Query with circles

Query with <-> operator

CASE 3: WHICH DRONES HAVE
ENTERED RESTRICTED ZONES?
WITH H3

UNDERSTANDING H3 GEOSPATIAL INDEXING: GRIDS,
RESOLUTIONS, AND COVERAGE

TRIANGLE SQUARE HEXAGON

Res Total number of cells Number of hexagons Number of pentagons

0 122 110 12

1 842 830 12

2 5,882 5,870 12

3 41,162 41,150 12

4 288,122 288,110 12

5 2,016,842 2,016,830 12

6 14,117,882 14,117,870 12

7 98,825,162 98,825,150 12

8 691,776,122 691,776,110 12

9 4,842,432,842 4,842,432,830 12

10 33,897,029,882 33,897,029,870 12

11 237,279,209,162 237,279,209,150 12

12 1,660,954,464,122 1,660,954,464,110 12

13 11,626,681,248,842 11,626,681,248,830 12

14 81,386,768,741,882 81,386,768,741,870 12

15 569,707,381,193,162 569,707,381,193,150 12

UNDERSTANDING H3 GEOSPATIAL INDEXING: GRIDS,
RESOLUTIONS, AND COVERAGE

Full video: https://www.youtube.com/watch?v=ay2uwtRO3QE

https://www.youtube.com/watch?v=ay2uwtRO3QE

HARNESSING H3 IN POSTGRESQL
Installation & Availability:
• H3 is a powerful geospatial indexing system and can be integrated into PostgreSQL
• To install, use the CREATE EXTENSION h3; command

• H3 is supported in cloud platforms, such as AWS RDS, enhancing its accessibility.

FUNCTION DESCRIPTION
h3_lat_lng_to_cell Converts latitude and longitude to an H3 index
h3_cell_to_boundary Returns the boundary coordinates of an H3 index cell
h3_get_resolution Determines the resolution level of an H3 index
h3_cell_to_parent Provides the parent cell of a given H3 index at a specified resolution
h3_cell_to_children Lists the children cells of a given H3 index at a specified resolution
h3_polygon_to_cells Converts a polygon to a set of H3 cells covering it

contains

DATABASE SCHEMA: SPATIAL ANALYSIS OF DRONE
TELEMETRY AND RESTRICTED ZONES

This diagram presents the database schema for
our spatial analysis system.
It includes three main tables:
• RESTRICTED_ZONES detailing geographically

restricted areas
• DRONE_TELEMETRY capturing telemetry data

from drones
• RESTRICTED_ZONES_H3_POLYFILL linking

restricted zones with H3 geospatial indexes
The schema illustrates the relationships between
restricted zones and drone telemetry data,
emphasizing the integration of H3 indexing for
advanced spatial queries and analysis.

RESTRICTED_ZONES
int id PK Primary Key
string zone_name Zone Name
polygon geom Geometry

(Polygon)

RESTRICTED_ZONES_H3_POLYFILL

int id PK Primary Key

int restricted_zone_id FK Foreign Key to
RESTRICTED_ZONES

h3index h3_index H3 Index

DRONE_TELEMETRY
int id PK Primary Key
string drone_id Drone ID
timestamp recorded_at Recorded

Timestamp
point geom Geometry

(Point)
h3index h3_index H3 Index

references

UNDERSTANDING H3 POLYFILLING: METHODOLOGY
AND POTENTIAL PITFALLS

h3_polygon_to_cells(geom, 8)
h3_grid_disk(

h3_polygon_to_cells(geom, 8)
, 1)

h3_polygon_to_cells(geom, 9)

IDENTIFYING DRONES IN RESTRICTED ZONES USING H3
INDEXES

SELECT dt.drone_id,
dt.recorded_at,
rz.zone_name,
dt.geom as drone,
rz.geom as restricted_zone

FROM spatial.drone_telemetry dt
INNER JOIN spatial.restricted_zones_h3_polyfill rzhp

ON dt.h3_index = rzhp.h3_index
INNER JOIN spatial.restricted_zones rz

ON rzhp.restricted_zone_id = rz.id;

290 rows retrieved starting from 1 in 436 ms
(execution: 376 ms, fetching: 60 ms)

35x Performance Speed-Up

CASE 4: FINDING DEVICES AT
THE SAME PLACE AND TIME

AGGREGATING DRONE TELEMETRY DATA FOR SPATIO-
TEMPORAL ANALYSIS

INSERT INTO spatial.drone_telemetry_aggregated
(drone_id, time_block, h3_parent_index)
SELECT
 drone_id,
 date_trunc('minute', recorded_at) -
(EXTRACT(MINUTE FROM recorded_at)::integer % 15) *
interval '1 minute' AS time_block,
 h3_cell_to_parent(h3_index) AS h3_parent_index
FROM
 spatial.drone_telemetry
GROUP BY
 drone_id,
 time_block,
 h3_parent_index;

DRONE_TELEMETRY
int id PK Primary Key
string drone_id Drone ID
timestamp recorded_at Recorded

Timestamp
geometry geom Geometry

(Point)
h3index h3_index H3 Index

DRONE_TELEMETRY_AGGREGATED
int id PK Primary Key
string drone_id Drone ID
timestamp time_block Time Block

h3index h3_parent_index Parent H3 Index

aggregates

Original Concept by Andriy Zabavskyy

https://www.linkedin.com/in/andriyzabavskyy

DETECTING SIMULTANEOUS DRONE PRESENCE WITH
AGGREGATED TELEMETRY DATA

SELECT
 h3_parent_index,
 time_block,
 COUNT(DISTINCT drone_id) AS unique_drones_count,
 ARRAY_AGG(DISTINCT drone_id) AS drones
FROM
 spatial.drone_telemetry_aggregated
GROUP BY
 h3_parent_index,
 time_block
HAVING
 COUNT(DISTINCT drone_id) > 1;

293 ms (execution: 243 ms, fetching: 50 ms)

CASE 5: TRACING DEVICES
THAT TRAVELED TOGETHER

IDENTIFYING DRONES WITH SHARED FLIGHT PATHS
• WITH PairedMovements AS (

SELECT
a.drone_id AS drone_id_a,
b.drone_id AS drone_id_b,
a.time_block,
a.h3_parent_index

FROM
spatial.drone_telemetry_aggregated

a
INNER JOIN

spatial.drone_telemetry_aggregated b
ON a.h3_parent_index =

b.h3_parent_index
AND a.drone_id <> b.drone_id
AND a.time_block = b.time_block

)

• SELECT
drone_id_a,
drone_id_b,
COUNT(*) AS pair_count,
ARRAY_AGG(DISTINCT h3_parent_index)

AS h3_cells
FROM

PairedMovements
GROUP BY

drone_id_a, drone_id_b
HAVING

COUNT(*) > 1
AND COUNT(DISTINCT h3_parent_index) >

1;

CASE 6: CALCULATING
TRILATERATION IN POSTGRESQL

WARDRIVING

Source: https://wigle.net/

https://wigle.net/

GEOSPATIAL TRIANGULATION

SELECT
 id,
 geom,
ST_Buffer(geom::geography,
radius)::geometry AS
circle
FROM spatial.points;

TRIANGULATION ANALYSIS: CALCULATING INTERSECTION
WITH circles AS
 (
 SELECT id,
 geom,
 St_buffer(geom::geography, radius)::geometry AS circle
 FROM spatial.points),
-- Find intersections between each pair of circles intersections
 as
 (
 select c1.id AS id1,
 c2.id AS id2,
 st_intersection(c1.circle, c2.circle) AS intersection
 FROM circles c1
 CROSS JOIN circles c2
 WHERE c1.id < c2.id),
-- Find a common intersection area of all three circles common_intersection
AS
(
 SELECT st_intersection(a.intersection, b.intersection) AS common_area
 FROM intersections a,
 intersections b
 WHERE a.id1 = b.id1
 AND a.id2 != b.id2
 AND st_intersects(a.intersection, b.intersection)),
-- Extract the point from the common intersection area and calculate the centroid
triangulation
AS
(
 SELECT (st_dump(st_intersection(common_area, c.circle))).geom AS triangulation_point,
 st_centroid(st_intersection(common_area, c.circle)) AS centroid
 FROM common_intersection,
 circles c
 WHERE st_intersects(common_area, c.circle)
 AND c.id NOT IN
 (
 SELECT id1
 FROM intersections
 WHERE id2 = c.id))
SELECT st_astext(triangulation_point) AS triangulation_point,
 st_astext(centroid) AS centroid_point
FROM triangulation limit 1;

SUMMARY

Source: https://www.minusrus.com/en

Powerful Geodata Handling
PostgreSQL excels in managing
and analyzing geospatial data

Future insights
Looking forward to exploring
these advanced topics in
upcoming sessions

Rich PostGIS Features
PostGIS provides an extensive
toolkit for geoanalytics

Beyond the Presentation
Further capabilities like Citus
for geo-data sharding,
PgRouting, geocoding, and
leveraging OpenStreetMap
(OSM) data in PostgreSQL

https://www.minusrus.com/en

Taras Kloba
Associate Director, Big Data & Analytics,

SoftServe Inc.

CONNECT ON SOCIAL MEDIA

linkedin.com/in/kloba

ANY QUESTIONS?

